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Numerical simulation of cellular convection in air 

BY N. F. VELTISHCHEV AND A. A. ZELNIN 
Hydrometeorological Centre of the U.S.S.R., Moscow 

(Received 19 April 1974) 

Three-dimensional convection in a Boussinesq fluid confined between horizontal 
rigid boundaries is studied in a series of numerical experiments. Convection in air, 
whose Prandtl number Pr = 0.71, is systematically investigated, together with 
another model for Pr = 1.  Convection with a steadily changing mean tempera- 
ture is also considered. Two-dimensional rolls over the Rayleigh number range 
4500 < Ra < 24000 and three-dimensional flow patterns over the range 
26 000 < Ra < 32 000 are shown to be stable in air when the mean temperature 
of the layer is constant (@/at = 7 = 0) .  Discrete changes in the slope of the heat- 
flux curve are shown to exist in the ranges 

7000 < Ra < 8000, 12000 6 Ra < 14000 and 24000 < Ra < 26000 

in air. Only the last discrete transition in the heat flux is associated with a 
significant transition in the flow pattern. Two-dimensional rolls with a hori- 
zontally asymmetric distribution of upward and downward motions over the 
range 4500 < Ra 6 8000, and three-dimensional flow patterns over the range 
10 000 < Ra < 20 000 are shown to be stable when the mean temperature varies 
with time. The circulation in a three-dimensional cell depends on the sign of the 
mean temperature change: downward motions occupy the centre of the cell when 
@/at > 0, and upward motions when @/at < 0. Motions start to be time 
dependent for Ra > 20000. Transitions in the planform are associated with 
discrete changes in the slope of the heat-flux curve. Transitions in both the heat 
flux and flow pattern depend quantitatively on the Prandtl number. 

1. Introduction 
In  a horizontal convecting layer of fluid, a number of discrete transitions occur 

in both the flow pattern and heat flux before the flow becomes fully turbulent. 
These transitions have been recently studied both experimentally and theo- 
retically. Most theoretical studies deal with the transitions in an infinite hori- 
zontal layer of fluid which is heated uniformly from below and cooled uniformly 
from above. There are two dimensionless parameters describing this problem. 
They are the Rayleigh number Ra and the Prandtl number Pr, defined as follows: 

Ra = ( g a / K v )  ATh3, Pr = v /K ,  

where g is the acceleration due to gravity, d the thermal expansion coefficient, 
K the thermal diffusivity, v the kinematic viscosity, h the layer depth and AT the 
temperature difference across the layer. 
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I n  an experimental study with water and acetone Malkus (1954) discovered 
that the heat flux between horizontal plates varies in linear segments with the 
impressed temperature difference AT between the plates if their separation h and 
the fluid properties are maintained constant. The observations made by Willis & 
Deardorff (1967b) in air show an increase in the slope of the heat-flux curve a t  
Ra 1: 8200 and Ra 2: 24 000. Krishnamurti (1973) observed the first transition 
in air a t  Ra = 5600, but did not find the transition at Ra = 8200. She also 
pointed out that there are decreases in the slope of the heat-flux curve a t  
Ra 2: 11 000 and Ra N 17 000. The observations by Brown (1973) in air show 
discrete transitions in the heat flux a t  Ra 2: 9600 and Ra N 25 000. 

In  the observational studies by Willis & Deardorff (1967a, 1970), Krishnamurti 
(1973) and Brown (1973) it was noted that subjecting a horizontal layer of air to 
a slow increase in the Rayleigh number beyond the critical value led to the 
appearance of periodic fluctuations superimposed on two-dimensional rolls. 
Willis & Deardorff ( 1 9 6 7 ~ )  observed temperature fluctuations beyond Rn 2: 6300, 
and Brown (1973) beyond Ra N 6000. The appearance of oscillatory motions in 
air at  Ra N 5800 was reported by Willis & Deardorff (1970) and a t  Ru E 5600 by 
Krishnamurti (1 973). 

A theoretical study by Busse (1972) shows that in liquids with small Prandtl 
numbers two-dimensional rolls are unstable to oscillating three-dimensional 
disturbances as soon as the amplitude of the convective motions exceeds some 
critical value. A numerical simulation of three-dimensional convective motions 
in air by Somerville (1973) shows that a t  Ra = 4000 two-dimensional convective 
rolls are the steady pattern. At Ra = 9000 his model reproduces the experi- 
mentally observed unsteady equilibrium state of vertically coherent oscillatory 
waves superimposed on rolls. 

In  the present study three-dimensional calculations in air are extended to  
Ra = 32 000 and compared with observational data. 

The second task of this study was to simulate convective motions in a domain 
with a nonlinear conduction temperature profile. The influence of this factor was 
studied theoretically by Palm (1960), Segel & Stuart (1962), Segel (1965), 
Krishnamurti (1968a) and Veltishchev (1969). All these authors came to the 
same general conclusion that the hexagonal pattern can be steady a t  slightly 
supercritical Rayleigh numbers. This conclusion was supported by experiments 
of Krishnamurti (1968b). The finite amplitude analysis which was used in these 
studies is quite complete but restricted to relatively small supercritical Rayleigh 
numbers. The numerical simulation of convective motions in an internally heated 
fluid layer by Thirlby (1970) shows that hexagonal cells with downward motion 
in the centre are stable when Pr = 6.8. I n  the case of small Prandtl number 
(Pr = 1) his model reproduces two-dimensional rolls. 

In  the present study numerical experiments are extended to the cases of a 
mean temperature steadily increasing or decreasing with time for small Prandtl 
numbers (Pr = 0-71 and 1) .  
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2. Governing equations and numerical method 
The fluid is characterized by its mean density p, (except in the buoyancy term), 

coefficient of thermal expansion a, coefficient of kinematic viscosity v and 
coefficient of thermometric conductivity K, all assumed to be constant. A fluid 
layer of depth h and infinite horizontal extent is confined above and below by 
perfectly conducting rigid boundaries. An adverse temperature difference AT is 
maintained across. the layer. In the conduction state, the temperature profile is 
defined as in the study by Krishnamurti ( 1 9 6 8 ~ ) :  

where T,  is the static temperature and T, is a reference static temperature equal 
to Vt, where = @/at = constant. This represents the case in which the tempera- 
ture at  all points in the fluid is changing at the same rate as that at  the boundaries, 
and the shape of the temperature profile is independent of time. 

Non-dimensionalizing by using h as the length scale, h2/v as the time scale, 
AT as the temperature scale and pov2/h2 as the pressure scale, we obtain dimen- 
sionless equations for the conservation of momentum, mass and thermodynamic 
energy in the form 

(2) dV/d t  = -grad p + RaPr-1Tk + V V ,  

divV = 0, 

d T / d t  = w - NZw + Pr-,V2T, 

(3) 

(4) 

where V is the velocity vector, P the pressure, T the temperature deviation from 
the static value, w the vertical component of velocity, Z the non-dimensional 
height, k the unit vertical vector, Ra and Pr the Rayleigh and Prandtl numbers 
defined above and N = Vh2K-lAT-l the dimensionless parameter characterizing 
the variation in the mean temperature with time. 

In  the calculations to be reported in this paper cyclic (periodic) boundary 
conditions were used at  the side walls. The horizontal extent of the domain in the 
X direction was 2.34 times the depth and in the Y direction was 4.032 times the 
depth. The initial state consisted of the conductive solution plus a random 
perturbation of small amplitude added to the temperature field. 

An adaptation of Chorin’s (1968) method was used to solve the system (2)-(4). 
For the calculations reported below, the numbers of grid points in the X, Y and 2 
directions were 25, 25 and 9, respectively. The details of the numerical method 
are described in the paper by Veltishchev & ielnin (1973). 

The non-dimensional parameters Pr and N and the initial conditions were 
fixed in each numerical experiment. The integration was started from the initial 
conditions at a given Ra,, and continued until a final steady or equilibrium 
unsteady state was reached at  this Ra,. The pattern obtained at  Ra, provided the 
initial conditions for integration at  the next Rayleigh number Ra, = Ra, + ARa, 
and so on. Increments ARa = 1000 were chosen over the range 

4500 6 Ra < 10000 and ARa = 2000 
23-2 
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Experiment 

1 
2 
3 
4 
5 
6 
7 

8 

Ranges of parameters 
f 

A > Planform of initial 
Ra x Pr N temperature disturbances 

Hexagons with negative 
7'3-11.0 temperature deviations 
8.0-11.8 in the centres 

0 Rectangles 
- 8.0- - 9.3 

8.0 Hexagons with positive 
temperature deviations 
in the centres 

7 4.5-32 0.71 
45-20 1.0 
4.5-24 0.71 
4.5-20 1.0 
4.5-8 1.0 
4.5 1.0 
4.5 1.0 

4.5 1 -0 0 Random field 

TABLE 1. List of numerical experiments 

over the range 10 000 6 Ra < 32 000. The non-dimensional time step was variable, 
and changed automatically to fulfil computational stability conditions 

The computer output consisted of the Nusselt number N u  and absolute 
maxima I @I max, IY I max and I W I max of the velocity components in the X ,  Y and 2 
directions a t  every time step, the horizontal and vertical profiles of all variables, 
the resulting mean temperature profile T, + T and the vertical distribution of both 
the Nusselt number and dimensionless convective heat flux a t  arbitrary time 
intervals for a given Ra before transition to the next Ra. Such a procedure permits 
a general analysis of computational results with very high time resolution and 
detailed analysis of the flow patterns with adequate time resolution. 

Table 1 lists the numerical experiments. An experiment will sometimes be 
referred to by its number in table 1. 

3. Results 
Linear conduction temperature profile for  N = 0 

Heat JEux and resulting temperature projle for Pr = 0.71. A plot of the heat flux 
H = NuRa us. the Rayleigh number Ra is shown in figure 1. The experimental 
values of H obtained by Willis & Deardorff (19676), Krishnamurti (1973) and 
Brown (1973) are plotted for comparison. It may be seen from this figure that the 
computed heat flux is systematically larger than the observed one, but approaches 
the observed values more closely than do two-dimensional computations with a 
fixed wavelength (Willis, Deardorff & Somerville 1972). 

It is difficult to discern the transitions in the heat flux from this small-scale 
figure, so the values of aHIaRa, which can be interpreted as an effective con- 
ductivity, were computed. Table 2 shows values of aHIaRa obtained from our 
computations and from experimental data of Willis & Deardorff (19673), 
Krishnamurti (1973) and Brown (1973). 

It may be seen from this table that the first transition in the computed heat 
flux, in the range 7000 < Ra < 8000, is in relatively good agreement with the 
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FIGURE 1 .  Heat flux H = NuRa vu9. Rayleigh number Ra for air (Pr  = 0.71, N = 0). 
-, present numerical results; + , experiments by Willis & Deardorff (1967b) ; A, experi- 
ments by Brown (1973); 0, experiments by Krishnamurti (1973); 0, two-dimensional 
computations with a fixed wavelength by Willis el al. (1972). Observational results for 
Ra < 6000 are not plotted owing to the scale of the figure. 

transition observed by Willis & Deardorff (1967b), though later on it was con- 
sidered doubtful by Willis et al. (1972) and Krishnamurti (1973). A second 
transition in the computed heat flux was obtained in the range 

12 000 < Ra < 14 000 

but was not observed in the experiments in air. The closest to it is a transition 
observed by Brown (1973) a t  Ra = 9600, but this seems to be too far from the 
computed one to be identified with it. The last computed transition, in 
24 000 < Ra < 26 000, closely agrees with that observed by Willis & Deardorff 
(1967b) and Brown (1973). As seen from this table the computed and observed 
values of the heat-flux slope are in a good agreement, but the positions of the 
boundaries between linear segments are somet.imes quite different. 

The values of the conductive (Hcona) and convective (H,,,,) components of 
the heat flux across the convective layer have been computed, and values of 
aH,,,,/aRa and aH,,,,/aRa have been derived a t  each horizontal level of our 
domain. The computations show that both components of the heat flux have 
simultaneous transitions which correspond to transitions in the overall heat 
flux H = NuRa. 

It is also worthwhile pointing out that transitions in the heat flux are asso- 
ciated with qualitative changes in the mean temperature profile. A positive 
temperature gradient was formed in the core of the convective layer after the 
first transition a t  Ra = 8000. The depth of this layer of positive temperature 
gradient doubled after the second transition a t  Ra = 14000, while the positive 
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-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

T 

FIGURE 2. Mean temperature distribution (in non-dimensional units) across the con- 
vective layer at different Rayleigh numbers; Pr = 0.71, N = 0. 1, undisturbed state; 
2, Ra = 4500; 3, Ra = 9000; 4, Ra = 20000; 5 ,  Ra = 32000. 

temperature gradient tended to decrease after the third transition at Ra = 26 000. 
With further increases in R a  the positive temperature gradient slowly increased 
again. Figure 2 shows mean temperature profiles at Rayleigh numbers corre- 
sponding to the middle of the linear segments of the heat-flux curve. 
Flow and temperatacre patterns for Pr = 0.71. Two-dimensional rolls were 

formed independently of the initial conditions a t  Ra = 4500. The differences 
were only in the orientation of the rolls and their wavelength. The aspect ratio 
(horizontal extent/depth) of our domain permits a maximum roll wavelength of 
4-032. A wavelength close to the critical one was always selected. The relatively 
small aspect ratio of the computational domain is a weak point of this three- 
dimensional numerical simulation of convective motions, because only large 
discrete transitions in the wavelength are permitted. But a t  present it is hard to 
avoid these difficulties, since increasing the aspect ratio leads to an enormous 
increase in the computation time. 

Thus a continuous increase in the horizontal wavelength with Ra as was 
observed in experiments could not be expected. Practically two-dimensional 
steady rolls with the same wavelength existed over the range 4500 Q Ra Q 24 000. 
A slight bimodality of the flow pattern appeared and increased progressively over 
the range 16000 < Ra Q 32000. At Ra = 16000 the amplitude of periodic 
motion, with wavelength close to the critical one, started to grow along the rolls, 
but an abrupt transition to a steady three-dimensional flow pattern occurred 
only a t  Ra = 26 000, corresponding to the transition in the heat flux. An example 
of the horizontal distribution of vertical velocity in the middle of the convective 
layer at Ra = 32 000 is shown in figure 3. 
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0 

Normalized horizontal extent, Y 

FIGURE 3. Horizontal distribution of vertical velocity in the middle of the convective 
layer a t  Ra = 32000 (Pr = 0.71, N = 0). -, zero vertical velocity; +, positions of 
maximum upward motion; - , positions of maximum downward motion. The original 
computational domain is repeated twice in both directions. Horizontal extents are 
normalized by the depth of the convective layer. 

These results are a t  variance with both the experimental observations of 
Willis & Deardorff (1970) and Krishnamurti (1973) and the calculations of 
Somerville (1973) a t  Ra = 9000, which indicate oscillatory motions superimposed 
on two-dimensional rolls just after first the transition in the heat flux a t  
R a  = 5600. It seems that the presence of a slight bimodality in the flow at 
R a  2 16 000 and its progressive increase with further increases in the Rayleigh 
number explain the differences between two-dimensional and three-dimensional 
computations of the heat flux. Looking a t  figure 1 one can observe that significant 
discrepancies in the heat-flux computations arose and increased progressively as 
soon as bimodal structure of the flow pattern became more pronounced. 

The analysis of successive vertical temperature profiles also gives no indication 
of any periodic temperature fluctuations, as was noted in the experiments by 
Willis & Deardorff ( 1 9 6 7 ~ )  and Brown (1973). The evolution of positive and 
negative two-dimensional thermals was more or less steady over the range 
4500 < Ra Q 24 000. It seems that fairly discrete changes in the slope of isotherms 
correspond to the zones of the heat-flux transitions. Transitions in the conductive 
component of the heat flux support this point. The analysis of vertical and 
horizontal profiles shows that the transition from a two-dimensional flow pattern 
to a three-dimensional one occurs as soon as adjacent positive thermals near the 
upper boundary and negative thermals near the lower boundary merge. Figure 4 
illustrates the beginning of this merging a t  Ra = 24 000. Beyond this Rayleigh 
number the temperature started to be strongly periodic in both X and Y ,  but no 
fluctuations were observed until the end of the run a t  Ra = 32 000. 
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FIGURE 4. Contours of temperature deviation from the conduction profile (in non- 
dimensional units) across two-dimensional rolls (solid lines) at Ra = 24000 (PT = 0.71, 
N = 0). Streamlines are given schematically by dashed lines. Arrows indicate the direction 
of circulation. 

There are only two differences between the numerical calculations and the 
experiments which might account for the above discrepancies in the flow and 
temperature patterns. The first is the difference in the side-wall boundary condi- 
tions and the second is the difference in the aspect ratios. Either could cause a 
more stable convective regime in the numerical model with cyclic side-wall 
boundary conditions and small aspect ratio. It is interesting, however, that the 
presence of oscillations in experiments does not affect such integral characteristics 
as the heat flux across the convective layer and the effective conductivity of the 
convective layer, which are quite close both in our model and in experiments with 
air. 

Effects of Prandtl number. Numerical results for a Prandtl number PY = 1 show 
that a rather small change in this parameter affects quantitatively the results 
obtained above. The non-dimensional heat flux Nu is 4-5 % larger than in the 
case of air. There is only one transition in the heat flux, in the range 

10 000 < Ra < 12 000, 

instead of the first and the second transitions in air. The equivalent of the third 
transition in air appears now in the range 16 000 < Ra < 18 000. 

Two-dimensional flow patterns exist over the range 4500 6 Ra < 16000. 
A weak bimodal structure appears in the flow a t  Ra = 8000, and the transition 
from steady quasi-two-dimensional flow to the steady three-dimensional flow 
takes place a t  Ra = 18 000, together with the last transition in the heat flux. 

These results disagree with the observations by Willis & Deardorff (1967b), 
which indicate that the heat-flux transitions are independent of the Prandtl 
number, and support the observations by Malkus (1954), which indicate transi- 
tions a t  Ra N 11 000 and Ra N 18 000 in acetone and water (Pr = 3.6 and 6-7, 
respectively), and the observations of Krishnamurti (1970), which show transi- 
tions in both the heat flux and flow pattern a t  Ra = 17 000 for Pr = 6.7. 
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FIGURE 5. Heat flux N u  vus. Rayleigh number Ra for N > 0, Pr = 0.71. Nusselt numbers 
for N = 0 are plotted for comparison (dashed line). 

Nonlinear conduction temperature projile 

Heatflux for Pr = 0.71. A plot of the heat flux N u  vus. the Rayleigh number for 
N > 0 (experiment 3) is shown in figure 5. Nusselt numbers for N = 0 are plotted 
for comparison. This figure shows that the nonlinear conduction temperature 
profile increases the heat flux across the convective layer. The values of aH/aRa 
for N > 0 are given in table 3 together with data for N = 0. One can observe that 
the transition in the heat flux in the range 8000 < Ra < I0 000 for N > 0 corre- 
sponds to the transition in the range 24 000 < Ra < 26 000 for N = 0. 

The values of the Nusselt number for N < 0 are exactly the same as those in 
the case N > 0, so that the sign of the curvature of the conduction temperature 
profile does not affect the heat flux across the convective layer. There are, 
naturally, inverse distributions of the conductive and convective components of 
the heat flux in these two situations. Fluctuations in the heat flux appeared a t  

Plow and temperature pattern for Pr = 0.71. Two-dimensional flow patterns 
were formed independently of the initial conditions a t  Ra = 4500. They differed, 
as a t  N = 0, only in the orientation of the rolls and the time required to obtain 
the final steady state. The wavelength close to the critical one was always 
selected. Two-dimensional rolls were stable over the range 4500 < Ra 6 8000. 
The main difference between these rolls and the classical ones for N = 0 consists 
of an asymmetrical horizontal distribution of upward and downward motion 

RU = 24000. 
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0 

Normalized horizontal extent, Y 
FIGURE 6. Horizontal distribution of vertical velocity in the middle of the convective layer 
at  Ra = 8000 ( N  > 0, Pr = 0.71). 1/11, areas of downward motions; --, boundaries 
between ascending and descending motion for N = 0, plotted for comparison. 

I __- - - -_ .  , . 
\ 

I 

Horizontal extent, Y 
FIGURE 7. Contours of temperature deviation from the conduction profile (in non-dimen- 
sional units) across two-dimensional rolls (solid lines) at  Ra = 8000 ( N  > 0, Pr = 0.71). 
Schematic streamlines are indicated by dashed lines. 

inside each two-dimensional cell. The area occupied by upward motion is half 
that occupied by downward motion when N > 0. The situation is reversed when 
N < 0. An example of the horizontal distribution of vertical velocity in the 
middle of a convective layer for N > 0 (experiment 3) is shown in figure 6. 
Asymmetry exists also in the intensity of the upward and downward motion. 
The intensity of the maximum vertical velocity for upward motion is twice that 
for downward motion when N > 0. This relation between the intensities is 
reversed when N < 0. An example of streamlines and the temperature distribu- 
tion across such two-dimensional rolls is shown in figure 7. Comparison of this 
figure with figure 4 shows remarkable differences in the vertical structure of the 
motions and temperatures, which appear owing to the difference in the conduction 
temperature profiles. 
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Normalized horizontal extent, Y 

FIGURE 8. Horizontal distribution of vertical velocity near upper boundary of convective 
layer at Ra = 10000 ( N  > 0, Pr = 0.71). -, zero vertical velocity; ---, contours of 
constant vertical velocity (in non-dimensional units) ; + , positions of maximum upward 
motion; - , positions of maximum downward motion. The original computational domain 
is repeated twice in both directions. Horizontal extents are normalized by the depth of 
the convective layer. 

A steady three-dimensional flow pattern was formed at  Ra = 10000. This 
transition in the flow pattern coincided with the transition in the heat flux. 
Figure 8 shows the horizontal distribution of vertical velocity near the upper 
boundary for N > 0. This figure shows that the flow pattern consists of large 
areas of descending motion bounded by narrow zones of ascending motion. 
The plus and minus signs in this figure correspond to the cores of regions of upward 
and downward motion. It is worthwhile noting that the zone of maximum 
descending motion is located not in the centre of the cell, but at the periphery of 
the area of downward motion. The intensity of the maximum vertical velocity 
for upward motion is approximately five times that for downward motion. The 
planform resembles a hexagonal one only distantly (it is intermediate between 
rectangular and hexagonal). It should also be noted that the vertical motions 
are not in phase across the convective layer a t  the peripheral part of the cells. 
Cells appear to be more rectangular near the lower boundary and more hexagonal 
near the upper boundary. 

The motions are antisymmetric to those described above for N < 0. In  view of 
the full antisymmetry of motions in the range 4500 < Ra 6 8000 for Pr = 1, the 
computations for larger Rayleigh numbers were done only for the model with 
N > 0. 

At Ra = 20000 adjacent regions of downward motion merge along the X 
direction near the upper boundary. Time-dependent flow appears near the lower 
boundary, where the mean temperature gradient is largest, a t  Ra = 24 000. 
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Effects of Prandtl number. Computations for Pr = 1 show that a small change in 
this parameter affects quantitatively the results obtained above for air. The non- 
dimensional heat flux Nu is 4-5 % larger than in the case of air. Transitions in 
both the heat flux and flow pattern are shifted from Ra = 10 000 for Pr = 0.71 to 
Ra = 8000 for Pr = 1. An oscillatory regime near the lower boundary appears a t  
Ra = 20 000 instead of Ra = 24 000 as for air. 

These results support the conclusion of Thirlby (1970) that in a liquid with 
Pr = 1 two-dimensional rolls are a stable pattern at slightly supercritical 
Rayleigh numbers, but disagree with his conclusion that transition to three- 
dimensional flow takes place only for Pr > 2.5. 

4. Conclusions 
These numerical experiments have enlarged our physical understanding of 

three-dimensional convection between rigid boundaries. 
(i) Discrete changes in the slope of the heat-flux curve a t  different Rayleigh 

numbers are shown to be associated with changes in the flow and temperature 
pattern, and are dependent on the Prandtl number. These results are summarized 
in table 4. 

(ii) Horizontally symmetric steady two-dimensional rolls and three-dimen- 
sional flow patterns exist over the range 4500 < Ra < 32 000 when the conduction 
temperature profile is linear, and horizontally asymmetric steady two-dimen- 
sional rolls and quasi-hexagonal flow patterns exist over the range 

4500 < Ra < 20000 

when the conduction temperature profile is nonlinear ( N  E 5 10). 
(iii) Some points still need to be clarified in view of the observational evidence 

of time-dependent motions instead of the steady ones obtained in this study. It 
should be stressed that current practical computing capabilities are only 
marginally adequate for the simulation of three-dimensional flows at  Rayleigh 
numbers above 3 x lo4, so that it would be highly desirable to check our results 
by performing similar calculations using alternative numerical methods, larger 
aspect ratios and finer grid resohtions. 

The authors are grateful to Mr A. I. Belousov and Miss N. M. Sazanovich for 
their help with the computations. 
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